Calculates the cross-correlation between two functional vectors using tf::tf_crosscor().
Note that it only operates on regular data and that the cross-correlation assumes that each column
has the same domain.
To apply this PipeOp to irregualr data, convert it to a regular grid first using PipeOpFDAInterpol.
If you need to change the domain of the columns, use PipeOpFDAScaleRange.
Parameters
The parameters are the parameters inherited from PipeOpTaskPreprocSimple,
as well as the following parameters:
arg::numeric()
Grid to use for the cross-correlation.
Super classes
mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpTaskPreproc -> mlr3pipelines::PipeOpTaskPreprocSimple -> PipeOpFDACor
Methods
Method new()
Initializes a new instance of this Class.
Usage
PipeOpFDACor$new(id = "fda.cor", param_vals = list())Examples
set.seed(1234L)
dt = data.table(y = 1:100, x1 = tf::tf_rgp(100L), x2 = tf::tf_rgp(100L))
task = as_task_regr(dt, target = "y")
po_cor = po("fda.cor")
task_cor = po_cor$train(list(task))[[1L]]
task_cor
#>
#> ── <TaskRegr> (100x2) ──────────────────────────────────────────────────────────
#> • Target: y
#> • Properties: -
#> • Features (1):
#> • dbl (1): x1_x2_cor